3 research outputs found

    Shooting Control Application from a Quadruped Robot with a Weapon System via Sliding mode Control Method

    Get PDF
    With the developing technological process, it is expected that the usage of robots will increase in defense systems as in every field. One of the main objectives of the robotic studies for the defense industry is to capture the targeted success under all kinds of disruptive effects with robotic systems and to present this technology to the service of the army. A weapon system with a single degree of freedom was placed on a quadruped robot. System’s dynamic behavior, which has 12 degrees of freedom and planar movements, is modeled mathematically. Simulations of the shots made to the fixed targets were carried out during the walking of the quadruped robot. The gun barrel stabilization was realized to achieve accurate shots under disruptive effects. The sliding-mode control method was used to perform the barrel stabilisation. In this study, it is shown that a quadruped robot with a weapon system can perform successful shots against fixed targets. MATLAB is used for simulations and the results are shown with figures, graphics, and tables

    Design, Control and Stabilization of a Transformable Wheeled Fire Fighting Robot with a Fire-Extinguishing, Ball-Shooting Turret

    No full text
    In this study, a hybrid wheeled fire extinguisher robot has been created. The robot has a two-degrees-of-freedom (DoF) fire extinguisher gun turret. To control the disruptive effect of mechanical oscillations on the firing system during movement of the robot body, PID and SMC controllers are used. When closed on flat ground, the robot’s five-piece transformable wheel construction allows it to travel swiftly. The wheel mechanism opens on tough terrain, allowing the wheel to assume a star-shaped configuration and enabling the robot to ascend by grasping onto obstructions. The three-dimensional mechanical design of the firefighter robot was designed first, followed by the kinematic model of the turret system and the three-dimensional Simscape model in the Matlab Simmechanic environment. Simulations of throwing fire-extinguishing balls at fire locations positioned at 20 m to 80 m horizontal and 1–30 m vertical distances were carried out on this model for three different scenarios (the robot is stationary, moving at constant speed and rotating around itself). The simulations resulted in a shooting success rate of 85.71% with PID and 95.23% with SMC (for a total of 105 shots). When the mistake rates were investigated, it was discovered that the constructed fire robot was usable in firefighting
    corecore